Автоматическая адаптация текстов для электронных учебников : проблемы и перспективы (на примере русского языка)

Title: Автоматическая адаптация текстов для электронных учебников : проблемы и перспективы (на примере русского языка)
Transliterated title
Avtomatičeskaja adaptacija tekstov dlja èlektronnych učebnikov : problemy i perspektivy (na materiale russkogo jazyka)
Variant title:
  • Automatic adaptation of the texts for electronic textbooks : problems and perspectives (on an example of Russian)
Source document: Новая русистика. 2014, vol. 7, iss. 1, pp. [19]-33
Extent
[19]-33
  • ISSN
    1803-4950 (print)
    2336-4564 (online)
Type: Article
Language
License: Not specified license
Rights access
embargoed access
 

Notice: These citations are automatically created and might not follow citation rules properly.

Abstract(s)
The paper is intended to describe the experience of using the authentic linguistic corpus materials within the project "Creating an electronic textbook of Russian as a foreign language". Special attention is paid to the fundamental principles of the new project - automatic adaptation of RNC's linguistic material. Worked out by means of information technologies, the product is supposed to adapt the complexity of authentic texts in terms of their syntactic and morphologic structures and vocabulary. The stages indispensible to attain the objective are also explained in the article. The paper describes not only the algorithm for solving the tasks and the final result of the research, but also the difficulties, which the developers face, and their solutions.
References
[1] АКИШИНА, А. А., КАГАН, О. Е.: Учимся учить. Для преподавателя русского языка как иностранногo. 2е изд., испр. и доп. Москва: Рус. яз. Курсы, 2002. 256 с.

[2] Гoсударственный стандарт по русскому языку как иностранному: Базовый уровень. Москва–Санкт-Петербург: «Златоуст», 2001. 112 с.

[3] НКРЯ: Что такое Корпус? http://www.ruscorpora.ru/corpora-intro.html.

[4] ТРЕБОВАНИЯ ПО РУССКОМУ ЯЗЫКУ КАК ИНОСТРАННОМУ: Первый уровень. Общее владение. Москва–Санкт-Петербург: «Златоуст», 2007. 89 c.

[5] DAVID M. BLEI, ANDREW Y. NG, MICHAEL I. JORDAN: Latent Dirichlet allocation. Journal of Machine Learning Research. 01 2003, pp. 993–1022.

[6] SIBIRTSEVA, V., KARPOV, N.: Development of modern electronic textbook of Russian as a foreign language: content and technology / Working papers by Издательский дом НИУ ВШЭ. Series WP "Working Papers of Humanities". 2012. No. 2012-6 .

[7] АДАПТАЦИЯ ТЕКСТА: http:lingvocourse.ru/www/public_html/cgi-bin/simp/textarea.py

[8] РУССКИЙ ГЛАГОЛ: http:lingvocourse.ru/www/index.php?ctg=lesson_info&courses_ID=1.