Title: Přehled mineralogických metod použitelných pro studium provenience štípané křišťálové industrie
Variant title:
- An overview of mineralogical methods employed in the study of the provenance of chipped crystal industry
- Eine Übersicht mineralogischer Methoden, die für die Untersuchung der Herkunft gespaltener Kristallindustrie herangezogen werden können
Source document: Moravskoslezská škola doktorských studií. Seminář 2. Měřínský, Zdeněk (Editor); Klápště, Jan (Editor). 1. vyd. Brno: Masarykova univerzita, 2011, pp. 72-83
Extent
72-83
Stable URL (handle): https://hdl.handle.net/11222.digilib/127720
Type
Article
Language
Czech
Summary language
Rights access
open access
License: Not specified license
Description
Práce je postavena na studiu geneticky odlišných vzorků. Jedná se o křišťály záměrně zvolené tak, aby se potvrdila, či naopak vyvrátila, schopnost použitých metod či jejich kombinace stanovit genezi vzorků, jež náležely k hydrotermálním křemenům, křemenům alpské parageneze a pegmatoidním křemenům. Proběhl výzkum z hlediska fluidních inkluzí a analýzy izotopického složení kyslíku. Zprvu uvažované použití laserové ablace nebylo později, vzhledem k povaze začleňování jistých prvků do struktury minerálu, realizováno. Bylo zjištěno, že kombinace metod studia poměru izotopů kyslíku 16O/18O a studia fluidních inkluzí je schopna rozlišit geneticky rozdílné vzorky i v případě, že neznáme místo jejich odběru. Zřejmě lze rozlišit i lokality se shodnými genetickými typy fluid, podobně jako v této práci analyzované křišťály z nalezišť Žulová (Česká republika) a Jegłowa (Polsko).
This article is based on a study of genetically different samples. These were deliberately selected so that they either confirmed or disproved the potential of the methods, as well as combinations of them, for defining the genesis of a sample. In terms of origination, the samples were hydrothermal quartzes, Alpine paragenesis quartzes and pegmatoid quartzes. These were studied in terms of fluid inclusions and analysis of the isotopic composition of oxygen. Although laser ablation was considered, it was ruled out in the light of the characteristics of certain elements intrinsic to the structure of the mineral. It is known that investigation combining oxygen isotope 16O/18O studies with fluid inclusions can distinguish genetically different samples even when the site of origin is not known. Likewise, it is probably possible to distinguish locations with identical genetic types of fluids, as illustrated by the samples from Žulová and Jegłowa analysed in this contribution.
References
[1] BENEŠOVÁ, Z. – ĎURIŠOVÁ, J., 1980: Plynokapalné uzavřeniny a jejich význam pro geologii. Výzkumné práce ÚÚG 23Ú. Praha: Ústřední ústav geologický.
[2] BORISOV, O. V. – MAO, X. – RUSSO, R. E., 2000: Effects of crater development on fractionation and signal intensity during laser ablation inductively coupled plasma mass spectrometry, Spectrochimica Acta Part B: Atomic Spectroscopy 55, 1693–1704. | DOI 10.1016/S0584-8547(00)00272-X
[3] CLAYTON, R. N. – O’NEIL, J. R. – MAYEDA, T. K., 1972: Oxygen Isotope Exchange between Quartz and Water, J. Geophys. Res., 77, 3057–3067.
[4] DERYAGIN, B. V. – CHURAEV, N. V., 1986: Properties of water layers adjacent to interfaces. In: Fluid Interfacial Phenomena (Croxton, C. A., ed.), 663–738. John Wiley and Sons.
[5] FERNANDÉZ, B. – CLAVERIE, F. – PÉCHEYRAN, CH. – DONARD, O. F. X., 2007: Direct analysis of solid samples by fs-LA-ICP-MS, Trends in Analytical Chemistry 26, 951–966. | DOI 10.1016/j.trac.2007.08.008
[6] GONZALES, J. – MAO, X. – ROY, J. – RUSSO, R. E., 2002: Comparison of 193, 213 and 266 nm laser ablation ICP-MS, J. Anal. At. Spectrom. 17, 1108–1113. | DOI 10.1039/B202122F
[7] GONZALES, J. – LIU, C. – MAO, X. – RUSSO, R. E., 2004: UV-femtosecond laser ablation-ICP-MS for analysis of alloy samples, J. Anal. Atom. Spectrom. 19, 1165–1168. | DOI 10.1039/B403205E
[8] GÖTZE, J. – PLÖTZE, M. – GRAUPNER, T. – HALLBAUER, D. K. – BRAY, C. J., 2000: Trace element incorporation into quartz: A combined study by ICP-MS, electron spin resonance, cathodoluminiscence capillary ion analysis, and gas chromatography, Geochim. Cosmochim. Acta 68, 3741–3759.
[9] GUILLONG, M. – GÜNTHER, D., 2002: Effect of particle size distribution on ICP-inducted elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry, J. Anal. At. Spectrom. 17, 831–837. | DOI 10.1039/B202988J
[10] GÜNTHER, D. – HEINRICH, CH. A., 1999: Comparison of the ablation behaviour of 266 nm Nd:YAG and 193 nm arF excimer lasers for LA-ICP-MS analysis, J. Anal. At. Spectrom. 14.
[11] HIDDEN, W. E., 1882: A phenomenal find of fluid-bearing quartz crystals, New York Acad. Sci. Trans. 1, 1369–1374.
[12] HOEFS, J., 2004: Stable isotope geochemistry. Berlin: Springer Verlag.
[13] HORN, I. – GUILLONG, M. – GÜNTHER, D., 2001: Wavelenght dependant ablation rates for metals and silicate glasses using homogenized laser beam profiles – implications for LA-ICP-MS, Applied Surface Science 182, 91–102. | DOI 10.1016/S0169-4332(01)00465-2
[14] HLADÍKOVÁ, J., 1988: Základy geochemie stabilních izotopů lehkých prvků. Brno: Univerzita J. E. Purkyně.
[15] HURAIOVÁ, M. – HURAI, V. – SLOBODNÍK, M., 2002: Základy štúdia fluidných inklúzií v mineráloch. Brno: Vydavatelství MU.
[16] JERMAKOV, N. P. – DOLGOV, Y. A., 1979: Thermobarogeochemistry. Moscow: Nedra Press.
[17] KERKHOF, A. M. V. D. – HEIN, F. H., 2001: Fluid inclusion petrography, Lithos 55, 27–47. | DOI 10.1016/S0024-4937(00)00037-2
[18] KONTÁR, M., 2010: Studium geneticky významných znaků křišťálových křemenů z vybraných lokalit. MS, diplomová práce, rešeršní část. http://is.muni.cz/th/175787/prif_m/?info.
[19] KUHN, H. R. – GUILLONG, M. – GÜNTER, D., 2004: Size-related vaporization and ionization of laser-induced glass particles in the inductively coupled plasma, Anal. Bioanal. Chem. 378, 1069–1074. | DOI 10.1007/s00216-003-2346-7
[20] MOŽNÁ, V., 2006: Studium laserové ablace ocelí ve spojení s ICP-OES a ICP-MS. Brno.
[21] NEONY, S. H. – BORISOV, O. V. – YOO, J. H. – MAO, X. L. – RUSSO, R. E., 1999: Effect of particle size distribution oninductively coupled plasma mass spectrometry signal intensity dutiny laser ablation of glass samples, Anal. Chem. 71, 5123–5130. | DOI 10.1021/ac990455a
[22] ROEDDER, E., 1967: Metastable "superheated" ice in liquid-water inclusions under high negative pressure, Science 155, 1414–1417. | DOI 10.1126/science.155.3768.1413
[23] ROEDDER, E., 1984: Fluid inclusions, Rev. Mineral. 12., Mineral. Soc. Am. Blacksburg.
[24] RUSSO, R. E. – MAO, X. L. – LIU, C. – GONZALES, J., 2004: Laser assisted plasma spectrochemistry: laser ablation, J. Anal. At. Spectrom. 19, 1084–1089. | DOI 10.1039/b403368j
[25] SHEPHERD, T. J., 1977: Fluid inclusion study of the Witwatersrand gold-uranium ores, Philos Trans. R. Soc. Lond. Ser. 268, 549–565. | DOI 10.1098/rsta.1977.0131
[26] SHEPHERD, T. J. – RANKIN, A. H. – ALDERTON, D. H. M., 1985: A practical guide to fluid inclusion studies. Glasgow: Blackie & Sons.
[27] ZHENG, Y. F., 1993: Calculation of oxygen isotope fractionation in anhydrous silicate minerals, Geochim. Cosmochim. Acta 57, 1079–1091. | DOI 10.1016/0016-7037(93)90306-H
[2] BORISOV, O. V. – MAO, X. – RUSSO, R. E., 2000: Effects of crater development on fractionation and signal intensity during laser ablation inductively coupled plasma mass spectrometry, Spectrochimica Acta Part B: Atomic Spectroscopy 55, 1693–1704. | DOI 10.1016/S0584-8547(00)00272-X
[3] CLAYTON, R. N. – O’NEIL, J. R. – MAYEDA, T. K., 1972: Oxygen Isotope Exchange between Quartz and Water, J. Geophys. Res., 77, 3057–3067.
[4] DERYAGIN, B. V. – CHURAEV, N. V., 1986: Properties of water layers adjacent to interfaces. In: Fluid Interfacial Phenomena (Croxton, C. A., ed.), 663–738. John Wiley and Sons.
[5] FERNANDÉZ, B. – CLAVERIE, F. – PÉCHEYRAN, CH. – DONARD, O. F. X., 2007: Direct analysis of solid samples by fs-LA-ICP-MS, Trends in Analytical Chemistry 26, 951–966. | DOI 10.1016/j.trac.2007.08.008
[6] GONZALES, J. – MAO, X. – ROY, J. – RUSSO, R. E., 2002: Comparison of 193, 213 and 266 nm laser ablation ICP-MS, J. Anal. At. Spectrom. 17, 1108–1113. | DOI 10.1039/B202122F
[7] GONZALES, J. – LIU, C. – MAO, X. – RUSSO, R. E., 2004: UV-femtosecond laser ablation-ICP-MS for analysis of alloy samples, J. Anal. Atom. Spectrom. 19, 1165–1168. | DOI 10.1039/B403205E
[8] GÖTZE, J. – PLÖTZE, M. – GRAUPNER, T. – HALLBAUER, D. K. – BRAY, C. J., 2000: Trace element incorporation into quartz: A combined study by ICP-MS, electron spin resonance, cathodoluminiscence capillary ion analysis, and gas chromatography, Geochim. Cosmochim. Acta 68, 3741–3759.
[9] GUILLONG, M. – GÜNTHER, D., 2002: Effect of particle size distribution on ICP-inducted elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry, J. Anal. At. Spectrom. 17, 831–837. | DOI 10.1039/B202988J
[10] GÜNTHER, D. – HEINRICH, CH. A., 1999: Comparison of the ablation behaviour of 266 nm Nd:YAG and 193 nm arF excimer lasers for LA-ICP-MS analysis, J. Anal. At. Spectrom. 14.
[11] HIDDEN, W. E., 1882: A phenomenal find of fluid-bearing quartz crystals, New York Acad. Sci. Trans. 1, 1369–1374.
[12] HOEFS, J., 2004: Stable isotope geochemistry. Berlin: Springer Verlag.
[13] HORN, I. – GUILLONG, M. – GÜNTHER, D., 2001: Wavelenght dependant ablation rates for metals and silicate glasses using homogenized laser beam profiles – implications for LA-ICP-MS, Applied Surface Science 182, 91–102. | DOI 10.1016/S0169-4332(01)00465-2
[14] HLADÍKOVÁ, J., 1988: Základy geochemie stabilních izotopů lehkých prvků. Brno: Univerzita J. E. Purkyně.
[15] HURAIOVÁ, M. – HURAI, V. – SLOBODNÍK, M., 2002: Základy štúdia fluidných inklúzií v mineráloch. Brno: Vydavatelství MU.
[16] JERMAKOV, N. P. – DOLGOV, Y. A., 1979: Thermobarogeochemistry. Moscow: Nedra Press.
[17] KERKHOF, A. M. V. D. – HEIN, F. H., 2001: Fluid inclusion petrography, Lithos 55, 27–47. | DOI 10.1016/S0024-4937(00)00037-2
[18] KONTÁR, M., 2010: Studium geneticky významných znaků křišťálových křemenů z vybraných lokalit. MS, diplomová práce, rešeršní část. http://is.muni.cz/th/175787/prif_m/?info.
[19] KUHN, H. R. – GUILLONG, M. – GÜNTER, D., 2004: Size-related vaporization and ionization of laser-induced glass particles in the inductively coupled plasma, Anal. Bioanal. Chem. 378, 1069–1074. | DOI 10.1007/s00216-003-2346-7
[20] MOŽNÁ, V., 2006: Studium laserové ablace ocelí ve spojení s ICP-OES a ICP-MS. Brno.
[21] NEONY, S. H. – BORISOV, O. V. – YOO, J. H. – MAO, X. L. – RUSSO, R. E., 1999: Effect of particle size distribution oninductively coupled plasma mass spectrometry signal intensity dutiny laser ablation of glass samples, Anal. Chem. 71, 5123–5130. | DOI 10.1021/ac990455a
[22] ROEDDER, E., 1967: Metastable "superheated" ice in liquid-water inclusions under high negative pressure, Science 155, 1414–1417. | DOI 10.1126/science.155.3768.1413
[23] ROEDDER, E., 1984: Fluid inclusions, Rev. Mineral. 12., Mineral. Soc. Am. Blacksburg.
[24] RUSSO, R. E. – MAO, X. L. – LIU, C. – GONZALES, J., 2004: Laser assisted plasma spectrochemistry: laser ablation, J. Anal. At. Spectrom. 19, 1084–1089. | DOI 10.1039/b403368j
[25] SHEPHERD, T. J., 1977: Fluid inclusion study of the Witwatersrand gold-uranium ores, Philos Trans. R. Soc. Lond. Ser. 268, 549–565. | DOI 10.1098/rsta.1977.0131
[26] SHEPHERD, T. J. – RANKIN, A. H. – ALDERTON, D. H. M., 1985: A practical guide to fluid inclusion studies. Glasgow: Blackie & Sons.
[27] ZHENG, Y. F., 1993: Calculation of oxygen isotope fractionation in anhydrous silicate minerals, Geochim. Cosmochim. Acta 57, 1079–1091. | DOI 10.1016/0016-7037(93)90306-H