Matematická výkonnost a metakognice žáků základních škol běžných, základních škol Montessori a žáků vyučovaných podle Hejného metody

Název: Matematická výkonnost a metakognice žáků základních škol běžných, základních škol Montessori a žáků vyučovaných podle Hejného metody
Variantní název:
  • Empirical research detecting nuances in the field of mathematical performance and metacognition in pupils studying at ordinary primary schools, at Montessori primary schools, and according to the Hejný method
Zdrojový dokument: Studia paedagogica. 2019, roč. 24, č. 1, s. [107]-133
Rozsah
[107]-133
  • ISSN
    1803-7437 (print)
    2336-4521 (online)
Type: Článek
Jazyk
Licence: Neurčená licence
 

Upozornění: Tyto citace jsou generovány automaticky. Nemusí být zcela správně podle citačních pravidel.

Abstrakt(y)
Empirická sonda je věnována problematice metakognice a výkonnosti v matematice. Cílem příspěvku je porovnat úroveň metakognice a matematické výkonnosti v závislosti na preferovaném z působu vedení výuky (proklamované kurikulum) jako jednoho z možných faktorů ovlivňujících žákovu výkonnost a kompetence. Pro účely této empirické sondy byla zvolena metoda kvaziexperimentu, přičemž byly vybrány tři skupiny žáků: (i) žáci ZŠ Montessori (n = 49), (ii) žáci běžných nespecializovaných ZŠ (n = 63) a (iii) žáci, kteří jsou vyučováni podle Hejného metody (n = 77). Na základě induktivní statistiky byly prokázány jak statisticky významné rozdíly (metakognitivní znalost; bias index), tak i statisticky a zároveň věcně významné rozdíly (výkonnost v matematice; kalibrace). Příčiny těchto diferencí jsou v závěru textu diskutovány a zároveň je poukázáno na limity metodologického šetření.
This empirical research focuses on metacognition and performance in mathematics. The aim of the paper is to compare the level of metacognition and mathematical performance depending on the preferred teaching method (i.e., proclaimed curriculum) as one of the possible factors influencing pupil performance and competence. For the purposes of this empirical research, a quasi-experimental method was chosen and three groups of pupils were selected: (i) pupils at Montessori primary school (n = 49); (ii) pupils at ordinary non-specialized primary schools (n = 63); and (iii) pupils who are taught according to the Hejný method (n = 77). Based on inductive statistics, statistically significant differences (in metacognitive knowledge and bias index) as well as statistically and substantively significant differences (in mathematical performance and calibration) have been detected. The causes of these differences are discussed at the end of the text, and the limitations of the methodological inquiry are also pointed out.
Note
Tento příspěvek byl podpořen projekty realizovanými na Univerzitě Jana Evangelisty Purkyně v Ústí nad Labem, Česká republika: UJEP-SGS-2017-43-003-2 a UJEP-SGS-2017-43-007-2.
Reference
[1] Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. US: Prentice-Hall, Inc.

[2] Bol, L., Hacker, D. J., O'Shea, P., & Allen, D. (2005). The influence of overt practice, achievement level, and explanatory style on calibration accuracy and performance. Journal of Experimental Education, 73(4), 269–290. | DOI 10.3200/JEXE.73.4.269-290

[3] Borkowski, J. G., Milstead, M., & Hale, C. (1988). Components of children's metamemory: Implications for strategy generalization. In F. E. Weinert & M. Perlmutter (Eds.), Memory development: Universal changes and individual differences (s. 73–100). Hillsdale, NJ: Erlbaum.

[4] Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn: Brain, mind, experience, and school. Washington, DC: National Academy Press.

[5] Brown, A. L., & Palinscar, A. S. (1989). Guided, cooperative learning and individual knowledge acquisition. In L. B. Resnick (Ed.), Knowing, learning, and instruction: Essays in honor of Robert Glaser (s. 393–451). Hillsdale, NJ: Erlbaum.

[6] Cermat (2006). Závěrečná z práva z projektu hodnocení výsledků vzdělávání žáků 5. ročníků základních škol 2006. [on-line]. Dostupné z http://www.cermat.cz/download.php?id_document=1404034181&at=1

[7] Cipro, M. (2002). Galerie světových pedagogů: encyklopedie Prameny výchovy. Praha: M. Cipro.

[8] Česká školní inspekce (2017). Výběrová z jištění výsledků žáků na úrovni 5. a 9. ročníků základních škol ve školním roce 2016/2017 – závěrečná z práva. Praha. Dostupné z http://www.csicr.cz/html/Vyberove_zjistovani_vysledku_zaku_2016_2017/resources/_pdfs_/Vyberove_zjistovani_2016_2017__.pdf

[9] Češková, T. (2016). Výukové situace rozvíjející kompetenci k řešení problémů: teoretický model jako východisko pro analýzu výuky. Pedagogika, 66(5), 530–548.

[10] Desoete, A., & Roeyers, H. (2006). Metacognitive macroevaluations in mathematical problem solving. Learning and Instruction, 16(1), 12–25. | DOI 10.1016/j.learninstruc.2005.12.003

[11] Desoete, A., Roeyers, H., & Buysse, A. (2001). Metacognition and mathematical problem solving in grade 3. Journal of Learning Disabilities, 34(5), 435–449. | DOI 10.1177/002221940103400505

[12] Dignath, Ch., & Büttner, G. (2008). Components of fostering self-regulated learning among students. A meta-analysis on intervention studies at primary and secondary school level. Metacognition and Learning, 3, 231–264. | DOI 10.1007/s11409-008-9029-x

[13] Disman, M. (2005). Jak se vyrábí sociologická znalost. Praha: Karolinum.

[14] Dohrmann, K. R., Nishida, T. K., Gartner, A., Lipsky, D. K., & Grimm, K. J. (2007). High school outcomes for students in a public Montessori program. Journal of Research in Childhood Education, 22(2), 205–217. | DOI 10.1080/02568540709594622

[15] Dole, J. A., Nokes, J. D., & Drits, D. (2009). Cognitive strategy instruction. In S. E. Israel & G. G. Duffy (Eds.), Handbook of research on reading comprehension (s. 347–372). New York, NY: Routledge.

[16] Duchovičová, J. (2010). Neurodidaktický a psychodidaktický kontext edukácie. Nitra: UKF.

[17] Dunlosky, J., & Metcalfe, J. (2009). Metacognition. Thousand Oaks, CA: Sage Publications.

[18] Dunning, D., Johnson, K., Ehrlinger, J., & Kruger, J. (2003). Why people fail to recognize thein own incompetence. Current Directions in Psychological Science, 12, 83–87. | DOI 10.1111/1467-8721.01235

[19] Flannelly, L. T. (2001). Using feedback to reduce students' judgment bias on test questions. Journal of Nursing Education, 40, 10–16.

[20] Flavell, J. H. (1976). Metacognitive aspects of problem solving. In L. B. Resnick (Ed.), The nature of intelligence (s. 231–236). Hillsdale, NJ: Erlbaum.

[21] Flavell, J. H., Miller, P. H., & Miller, S. A. (2002). Cognitive development. Upper Saddle River, NJ: Pearson Education.

[22] Garofalo, J., & Lester Jr, F. K. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal for Research in Mathematics Education, 16(3), 163–176. | DOI 10.2307/748391

[23] Glenberg, A. M., & Epstein, W. (1985). Calibration of comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 11(4), 702–718.

[24] Götz, L., Lingel, K., Artelt, C., & Schneider, W. (2013). Mathematisches Strategie wissen für 5. und 6. Klassen (MAESTRA 5-6). Göttingen: Hogrefe.

[25] Grizzle-Martin, T. (2014). The effect of cognitive- and metacognitive-based instruction on problem solving by elementary students with mathematical learning difficulties (Doctoral dissertation, Walden University, USA). Dostupné z http://elibraryusa.state.gov

[26] Hacker, D. J., Bol, L., & Keener, M. C. (2008). Metacognition in education: A focus on calibration. In J. Dunlosky & R. A. Bjork (Eds.), Handbook of metamemory and memory (s. 429–455), Los Angeles, CA: Taylor-Francis.

[27] Hejný, M., & Stehlíková, N. (1999). Číselné představy dětí. Praha: Univerzita Karlova.

[28] Hejný, M., Novotná, J., & Stehlíková, N. (Eds.). (2004). Dvacet pět kapitol z didaktiky matematiky. Praha: Pedagogická fakulta Univerzity Karlovy.

[29] Helmke, A. (2009). Unterrichtsqualität und Lehrerprofessionalität: Diagnose, Evaluation und Verbesserung des Unterrichts. Seelze-Velber: Klett.

[30] Helus, Z. (2006). Sociální psychologie pro učitele. Praha: Grada.

[31] Helvig, R., Rozek-Tedesco, M. A., Tindal, G., Heath, B., & Almond, P. J. (1999). Reading as an access to mathematics problem solving on multiple-choice tests for sixth-grade students. The Journal of Educational Research, 2(93), 113–125.

[32] Hoffman, B. (2010). "I think I can, but I'm afraid to try": The role of self-efficacy beliefs and mathematics anxiety in mathematics problem-solving efficiency. Learning and Individual Differences, 20(3), 276–283. | DOI 10.1016/j.lindif.2010.02.001

[33] Hoffman, B., & Schraw, G. (2009). The influence of self-efficacy and working memory capacity on problem-solving efficiency. Learning and Individual Differences, 19(1), 91–100. | DOI 10.1016/j.lindif.2008.08.001

[34] Chmelicek, B. A. (1992). Impact of cognitive and metacognitive strategies on mathematical performance and attitudes of adolescent (Doctoral dissertation, The University of Iowa, USA). Dostupné z http://elibraryusa.state.gov

[35] Chytrý, V., Pešout, O., & Říčan J. (2014). Preference metakognitivních strategií na pozadí úkolových situací v matematice. Ústí nad Labem: PF UJEP.

[36] Ignacio, G. N., Nieto, B. J. L., & Barona, G. E. (2006). The affective domain in mathematics learning. International Electronic Journal of Mathematics learning, 1(1), 16–32.

[37] Jacobs, J. E., & Paris, S. G. (1987). Children's metacognition about reading: Issues in definition, measurement, and instruction. Educational Psychologist, 22, 255–278.

[38] Koriat, A., Goldsmith, M., Schneider, W., & Nakash-Dura, M. (2001). The credibility of children's testimony: Can children control the accuracy of their memory reports? Journal of Experimental Child Psychology, 79(4), 405–437. | DOI 10.1006/jecp.2000.2612

[39] Kramarski, B., & Mevarech, Z. R. (2003). Enhancing mathematical reasoning in the classroom: The effects of cooperative learning and metacognitive training. American Educational Research Journal, 40(1), 281–310. | DOI 10.3102/00028312040001281

[40] Kramarski, B., Mevarech, Z. R., & Arami, M. (2002). The effects of metacognitive instruction on solving mathematical authentic tasks. Educational Studies in Mathematics, 49(2), 225–250. | DOI 10.1023/A:1016282811724

[41] Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: How difficulties in recognizing one's own incompetence lead to inflated self-assessments. Journal of Personality and Social Psychology, 77(6), 1121–1134. | DOI 10.1037/0022-3514.77.6.1121

[42] Lai, R. E. (2011). Metacognition: A literature review. Pearson. Dostupné z https://images.pearsonassessments.com/images/tmrs/Metacognition_Literature_Review_Final.pdf

[43] Lillard, A. S. (2012). Preschool children's development in classic Montessori, supplemented Montessori, and conventional programs. Journal of School Psychology, 50(3), 379–401. | DOI 10.1016/j.jsp.2012.01.001

[44] Lokajíčková, V. (2015). Příležitosti k rozvíjení kompetence k učení ve výuce zeměpisu (Doctoral dissertation). Dostupné z http://is.muni.cz/th/237142/pedf_d/

[45] Merenluoto, K., & Lehtinen, E. (2002). Conceptual change in mathematics: Understanding the real numbers. In M. Limón & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (s. 232–257). Netherlands: Springer.

[46] Mihalca, L., Mengelkamp, C., Schnotz, W., & Paas, F. (2015). Completion problems can reduce the illusions of understanding in a computer-based learning environment on genetics. Contemporary Educational Psychology, 41, 157–171. | DOI 10.1016/j.cedpsych.2015.01.001

[47] Montague, M. (1992). The effects of cognitive and metacognitive strategy instruction on the mathematical problem solving of middle school students with disabilities. Journal of Learning Disabilities, 25(4), 230–248. | DOI 10.1177/002221949202500404

[48] Montague, M. (2008). Self-regulation strategies to improve mathematical problem solving for students with learning disabilities. Learning Disability Quarterly, 31(1), 37–44. | DOI 10.2307/30035524

[49] Nelson, L. L. (2012). The effectiveness of metacognitive strategies on 8th grade students in mathematical achievements and problem solving skills (Doctoral dissertation, Southern University and A & M College, USA). Dostupné z http://elibraryusa.state.gov

[50] Nelson, T. O. (1996). Gamma is a measure of the accuracy of predicting performance on one item relative to another item, not the absolute performance on an individual item: comments on Schraw (1995). Applied Cognitive Psychology, 10(3), 257–260. | DOI 10.1002/(SICI)1099-0720(199606)10:3<257::AID-ACP400>3.0.CO;2-9

[51] Nelson, T. O., & Narens, L. (1994). Why investigate metacognition? In J. Metcalfe & A. P. Shimamura (Eds.), Metacognition: Knowing about knowing (s. 1–25). Cambridge, MA: The MIT Press.

[52] Neuenhaus, N., Artelt, C., Lingel, K., & Schneider, W. (2011). Fifth graders metacognitive knowledge: general or domain-specific? European Journal of Psychology of Education, 26(2), 163–178. | DOI 10.1007/s10212-010-0040-7

[53] Nietfeld, J. L., Cao, L., & Osborne, J. W. (2005). Metacognitive monitoring accuracy and student performance in the classroom. Journal of Experimental Education, 74(1), 7–28.

[54] Opravilová, E. (2016). Předškolní pedagogika. Praha: Grada.

[55] Ozsoy, G. (2012). Investigation of Fifth Grade Students' Mathematical Calibration Skills. Educational Sciences: Theory and Practice, 12(2), 1190–1194.

[56] Pappas, S., Ginsburg, H. P., & Jiang, M. (2003). SES differences in young children's metacognition in the context of mathematical problem solving. Cognitive Development, 18(3), 431–450. | DOI 10.1016/S0885-2014(03)00043-1

[57] Paris, S. G., & Winograd, P. (1990). How metacognition can promote academic learning and instruction. In B. Jones & L. Idol (Eds.), Dimensions of thinking and cognitive instruction (s. 15–51). Hillsdale, NJ: Erlbaum.

[58] Pilegard, C., & Mayer, R. E. (2015). Adding judgments of understanding to the metacognitive toolbox. Learning and Individual Differences, 41, 62–72. | DOI 10.1016/j.lindif.2015.07.002

[59] Pintrich, P. R. (2000). The role of goal orientation in self-regulated learning. In M. Boekarts & P. R. Pintrich (Eds.), Handbook of self-regulation (s. 451–502). San Diego, CA: Academic Press.

[60] Polya, G. (1973). How to solve it. Princeton, NJ: Princeton University Press.

[61] Pravdová, B. (2013). Podpora metakognice v pregraduální přípravě studentů učitelství. In J. Duchovičová, Z. Babulicová, & H. Zelená (Eds.), Medzinárodný dialóg o pedagogických a psychologických aspektoch edukácie (s. 60–68). Nitra: PF.

[62] Prins, F. J., Veenman, M. V. J., & Elshout, J. J. (2006). The impact of intellectual ability and metacognition on learning: New support for the threshold of problematicity theory. Learning and Instruction, 16(4), 374–387. | DOI 10.1016/j.learninstruc.2006.07.008

[63] Rawson, K. A., & Dunlosky, J. (2012). When is practice testing most effective for improving the durability and efficiency of student learning? Educational Psychology Review, 24(3), 419–435. | DOI 10.1007/s10648-012-9203-1

[64] Rendl, M., & Vondrová, N. (2014). Kritická místa v matematice u českých žáků na základě výsledků šetření TIMSS 2007. Pedagogická orientace, 24(1), 22–57. | DOI 10.5817/PedOr2014-1-22

[65] Risemberg, R., & Zimmerman, B. J. (1992). Self-regulated learning in gifted students. Roeper Review, 15(1), 225–230. | DOI 10.1080/02783199209553476

[66] Robinson, D. H., & Levin, J. R. (1997). Reflections on statistical and substantive significance, with a slice of replication. Educational Researcher, 26, 21–26.

[67] Roebers, C. M., Moga, N., & Schneider, W. (2001). The role of accuracy motivation on children's and adults' event recall. Journal of Experimental Child Psychology, 78, 313–329. | DOI 10.1006/jecp.2000.2577

[68] Ronzano, S. (2010). Effectiveness of metacognitive strategies for improving reading comprehension in secondary students (Doctoral dissertation). Dostupné z http://elibraryusa.state.gov

[69] Rusek, M., Stárková, D., Chytrý, V., & Bílek, M. (2017). Adoption of ICT innovations by secondary school teachers and pre-service teachers within education. Journal of Baltic Science Education, 16(4), 510–523.

[70] Rýdl, K. (2006). Metoda Montessori pro naše dítě: inspirace pro rodiče a další zájemce. Pardubice: Filozofická fakulta Univerzity Pardubice.

[71] Sarver, M. E. (2006). Metacognition and mathematical problem solving: Case studies for six seventh grade students (Doctoral dissertation, Montclair State University, NJ, USA). Dostupné z http://elibraryusa.state.gov/

[72] Sedláková, M. (2004). Vybrané kapitoly z kognitivní psychologie: Mentální reprezentace a mentální modely. Praha: Grada.

[73] Schneider, W., Schlagmüller, M., & Visé, M. (1998). The impact of metamemory and domain-specific knowledge on memory performance. European Journal of Psychology of Education, 13(1), 91–103. | DOI 10.1007/BF03172815

[74] Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic Press.

[75] Schoenfeld, A. H. (1987). What's all the fuss about metacognition. In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (s. 189–215). Hillsdale, NJ: Lawrence Erlbaum Associates.

[76] Schraw, G. (1998). Promoting general metacognitive awereness. Instructional Science, 26(1–2), 113–125. | DOI 10.1023/A:1003044231033

[77] Schraw, G. (2009). A conceptual analysis of five measures of metacognitive monitoring. Metacognition and Learning, 4(1), 33–45. | DOI 10.1007/s11409-008-9031-3

[78] Schraw, G., Kuch, F., & Gutierrez, A. P. (2013). Assessing the dimensionality of calibration measures used in monitoring research. Learning and Instruction, 24, 48–57.

[79] Siegler, R. S. (1999). Strategic development. Trends in Cognitive Sciences, 3(11), 430–435. | DOI 10.1016/S1364-6613(99)01372-8

[80] Slezáková, J., & Šubrtová, E. (2015). Matematika všemi smysly aneb Hejného metoda v MŠ, pokus o malou příručku pro kreativní pedagogy. Praha: Step by step ČR.

[81] Sperling, R. A., Howard, B. C., Miller, L. A., & Murphy, C. (2002). Measures of children's knowledge and regulation of cognition. Contemporary Educational Psychology, 27(1), 51–79. | DOI 10.1006/ceps.2001.1091

[82] Swanson, H. L. (1992). The relationship between metacognition and problem solving in gifted children. Roeper Review, 15, 43–48. | DOI 10.1080/02783199209553457

[83] Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach's alpha. International Journal of Medical Education, 2, 53–55. | DOI 10.5116/ijme.4dfb.8dfd

[84] Thiede, K. W., Griffin, T. D., & Wiley, J. (2011). Test expectancy affects metacomprehension accuracy. British Journal of Educational Psychology, 81(2), 264–273. | DOI 10.1348/135910710X510494

[85] Tobias, S., & Everson, H. T. (2002). Knowing what you know and what you don't: Further research on metacognitive knowledge monitoring. New York: College Entrace Examination Board.

[86] Veenman, M. V. J., & Spaans, M. A. (2005). Relation between intellectual and metacognitive skills: Age and task differences. Learning and Individual Differences, 15, 159–176. | DOI 10.1016/j.lindif.2004.12.001

[87] Veenman, M. V. J., Van Hout-Wolters, B. H. A. M., & Affenbach, P. (2006). Metacognition and learning: conceptual and methodological considerations. Metacognition and Learning, 1, 3–14. | DOI 10.1007/s11409-006-6893-0

[88] Walsh, B. A., & Petty, K. (2007). Frequency of six early childhood education approaches: A 10-year content analysis of early childhood education journal. Early Childhood Education Journal, 34(5), 301–305. | DOI 10.1007/s10643-006-0080-4

[89] Wang, M., Haertel, G., & Walberg, J. H. (1990). What influences learning? A content analysis of review literature. Journal of Educational Psychology, 84, 30–43.

[90] Wirth, J., & Leutner, D. (2008). Self-regulated learning as a competence. Zeitschrift für Psychologie/Journal of Psychology, 216(2), 102–110. | DOI 10.1027/0044-3409.216.2.102

[91] Zimmerman, B. J. (1990). Self-regulated learning and academic achievement: An overview. Educational Psychologist, 25(1), 3–17. | DOI 10.1207/s15326985ep2501_2

[92] Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into Practice, 41(2), 64–70. | DOI 10.1207/s15430421tip4102_2