Title: Siete vo vzdelávaní : možnosti využitia analýzy sociálnych sietí v pedagogickom výskume
Variant title:
- Networks in education : making use of social network analysis in educational research
Source document: Studia paedagogica. 2020, vol. 25, iss. 3, pp. [153]-185
Extent
[153]-185
-
ISSN1803-7437 (print)2336-4521 (online)
Persistent identifier (DOI): https://doi.org/10.5817/SP2020-3-6
Stable URL (handle): https://hdl.handle.net/11222.digilib/142862
Type: Article
Language
License: Not specified license
Notice: These citations are automatically created and might not follow citation rules properly.
Abstract(s)
Analýza sociálnych sietí si svojim širokým využitím nachádza miesto v množstve vedeckých odborov. V pedagogickom výskume má potenciál odhaliť a preskúmať doteraz neznáme usporiadania vzťahov medzi aktérmi vo vzdelávaní. Tento článok poskytuje úvod do problematiky, techník a využitia analýz y sociálnych sietí v pedagogickom výskume. V prvom rade predstavuje základnú terminológiu a koncepty analýz y sociálnych sietí. Na príklade malej siete ilustruje základné sieťové výpočty tak na úrovni jednotlivých aktérov, ako na úrovni celej siete. Článok ďalej poskytuje stručný prehľad štúdií z pedagogického výskumu, v ktorých bola analýza sociálnych sietí využitá. Hlavná časť článku na príklade fiktívnej triedy a piatich výskumných otázok ukazuje možnosti analýz y sociálnych sietí v pedagogickom výskume od základnej prierezovej analýz y po dynamickú inferenčnú analýzu. Krok za krokom sú predstavené rôzne metódy s následnou interpretáciou ich výsledkov. Okrem výpočtov centralít, klastrovacieho koeficientu a prepojenosti siete sú v príkladoch predstavené aj permutačné testy pri testovaní významnosti za využitia sieťových dát, ERGM (exponential random graph models) a STERGM (separable temporal exponential graph models). V neposlednom rade sú prediskutované problémy spojené s využitím analýz y sociálnych sietí.
With its wide range of applications, social network analysis has found its place in a number of scientific fields. In educational research, social network analysis has the potential to uncover and investigate yet unknown configurations of relationships among actors in education. This paper provides an introduction to the issues, techniques, and applications of social network analysis in educational research. It first surveys the basic terminolog y and concepts in social network analysis. Using the example of a small network, it demonstrates basic network calculations at the level of both the individual actors and the network as a whole. Furthermore, the paper provides a brief overview of studies in the field of educational research that have employed social network analysis. Using the example of a fictional classroom and five research questions, the main part of the paper demonstrates the application of social network analysis in educational research ranging from crosssectional descriptive analysis to dynamic inferential analysis. Step by step, it introduces a range of methods and interprets their results. In addition to centrality, clustering, and connectedness measures, the example contains permutation tests used for significance testing with network data, exponential random graph models (ERGM), and separable temporal exponential graph models (STERGM). Finally, the paper discusses challenges related to the application of social network analysis.
References
[1] Abbe, E. (2017). Community detection and stochastic block models: recent developments. The Journal of Machine Learning Research, 18(1), 6446–6531. https://doi.org/10.5555/3122009.3242034 | DOI 10.5555/3122009.3242034
[2] An, W. (2015). Multilevel meta network analysis with application to studying network dynamics of network interventions. Social Networks, 43, 48–56. https://doi.org/10.1016/j.socnet.2015.03.006 | DOI 10.1016/j.socnet.2015.03.006
[3] Anderson, A., Locke, J., Kretzmann, M., Kasari, C., & AIR-B Network. (2016). Social network analysis of children with autism spectrum disorder: predictors of fragmentation and connectivity in elementary school classrooms. Autism, 20(6), 700–709. https://doi.org/10.1177/1362361315603568 | DOI 10.1177/1362361315603568
[4] Anderson, C. J., Wasserman, S., & Crouch, B. (1999). A p* primer: Logit models for social networks. Social networks, 21(1), 37–66. https://doi.org/10.1016/S0378-8733(98)00012-4 | DOI 10.1016/S0378-8733(98)00012-4
[5] Bakkenes, I., De Brabander, C., & Imants, J. (1999). Teacher Isolation and Communication Network Analysis in Primary Schools. Educational Administration Quarterly, 35(2), 166–202. https://doi.org/10.1177/00131619921968518 | DOI 10.1177/00131619921968518
[6] Barclay, J. R. (1967). Effecting behavior change in the elementary classroom: An exploratory study. Journal of Counseling Psychology, 14(3), 240–247. https://doi.org/10.1037/h0024541 | DOI 10.1037/h0024541
[7] Baron, D. (1951). Personal-social characteristics and classroom social status: A sociometric study of fifth and sixth grade girls. Sociometry, 14(1), 32–42. https://doi.org/10.2307/2785208 | DOI 10.2307/2785208
[8] Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media. https://gephi.org/publications/gephi-bastian-feb09.pdf
[9] Batagelj, V., & Mrvar, A. (1998). Pajek – Program for Large Network Analysis. Connections, 21(2), 47–57. https://doi.org/10.1007/978-3-642-18638-7_4 | DOI 10.1007/978-3-642-18638-7_4
[10] Beebee, H., Hitchcock, C., & Menzies, P. (Eds.). (2009). The Oxford Handbook of Causation. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199279739.001.0001 | DOI 10.1093/oxfordhb/9780199279739.001.0001
[11] Berry, K. J., Johnston, J. E., & Mielke, J. P. W. (2019). A Primer of Permutation Statistical Methods. Springer International Publishing. https://doi.org/10.1007/978-3-030-20933-9 | DOI 10.1007/978-3-030-20933-9
[12] Bokhove, C. (2018). Exploring classroom interaction with dynamic social network analysis. International Journal of Research & Method in Education, 41(1), 17–37. https://doi.org/10.1080/1743727X.2016.1192116 | DOI 10.1080/1743727X.2016.1192116
[13] Bonacich, P. (1987). Power and Centrality: A Family of Measures. American Journal of Sociology, 92(5), 1170–1182. https://doi.org/10.1086/228631 | DOI 10.1086/228631
[14] Bonacich, P. (2007). Some unique properties of eigenvector centrality. Social Networks, 29(4), 555–564. https://doi.org/10.1016/j.socnet.2007.04.002 | DOI 10.1016/j.socnet.2007.04.002
[15] Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to meta-analysis. John Wiley & Sons. https://doi.org/10.1002/9780470743386 | DOI 10.1002/9780470743386
[16] Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55–71. https://doi.org/10.1016/j.socnet.2004.11.008 | DOI 10.1016/j.socnet.2004.11.008
[17] Borgatti, S. P., Everett, M. G., & Freeman, L. C. (2002). Ucinet for Windows: Software for Social Network Analysis. Analytic Technologies.
[18] Borgatti, S. P., Everett, M. G., & Johnson, J. C. (2018). Analyzing social networks. SAGE.
[19] Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323(5916), 892–895. https://doi.org/10.1126/science.1165821 | DOI 10.1126/science.1165821
[20] Breuer, R., Klamma, R., Cao, Y., & Vuorikari, R. (2009, September). Social network analysis of 45,000 schools: A case study of technology enhanced learning in Europe. In European Conference on Technology Enhanced Learning (s. 166–180). Springer.
[21] Burk, W. J., Steglich, C. E., & Snijders, T. A. (2007). Beyond dyadic interdependence: Actor-oriented models for co-evolving social networks and individual behaviors. International journal of behavioral development, 31(4), 397–404. https://doi.org/10.1177/0165025407077762 | DOI 10.1177/0165025407077762
[22] Butts, C. T. (2007). 8. Permutation Models for Relational Data. Sociological Methodology, 37(1), 257–281. https://doi.org/10.1111/j.1467-9531.2007.00183.x | DOI 10.1111/j.1467-9531.2007.00183.x
[23] Butts, C. T. (2008). Social network analysis with sna. Journal of statistical software, 24(6), 1–51. https://doi.org/10.18637/jss.v024.i06 | DOI 10.18637/jss.v024.i06
[24] Butts, C. T., & Butts, M. C. T. (2019). Package 'sna'.
[25] Carrington, P. J., Scott, J., & Wasserman, S. (2009). Models and methods in social network analysis. Cambridge University Press.
[26] Cerezo, F., & Ato, M. (2005). Bullying in Spanish and English pupils: A sociometric perspective using the BULL-S questionnaire. Educational psychology, 25(4), 353–367. https://doi.org/10.1080/01443410500041458 | DOI 10.1080/01443410500041458
[27] Chen, J., Lin, T. J., Justice, L., & Sawyer, B. (2019). The social networks of children with and without disabilities in early childhood special education classrooms. Journal of autism and developmental disorders, 1–16. https://doi.org/10.1007/s10803-017-3272-4 | DOI 10.1007/s10803-017-3272-4
[28] Cherven, K. (2013). Network graph analysis and visualization with Gephi: visualize and analyze your data swiftly using dynamic network graphs built with Gephi. Packt Publishing.
[29] Cherven, K. (2015). Mastering Gephi network visualization. Packt Publishing Ltd.
[30] Csárdi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, complex systems, 1695(5), 1–9.
[31] Csárdi, G., & Nepusz, T. (2010). igraph Reference manual. http://igraph. sourceforge. net/docu-mentation.html
[32] Cunningham, D., Everton, S., & Murphy, P. (2016). Understanding dark networks: A strategic framework for the use of social network analysis. Rowman & Littlefield.
[33] Daldal, A. (2014). Power and ideology in Michel Foucault and Antonio Gramsci: A compa-rative analysis. Review of History and Political Science, 2(2), 149–167.
[34] Diviák, T. (2017). Ekvivalence a blokové modelování v analýze sociálních sítí. Naše společnost (Our Society), 15(1), 27–40. https://doi.org/10.13060/1214438X.2017.1.15.366 | DOI 10.13060/1214438X.2017.1.15.366
[35] Edwards, G. (2010). Mixed-method approaches to social network analysis. National Centre for Research Methods.
[36] Fortunato, S. (2010). Community detection in graphs. Physics reports, 486(3–5), 75–174. https://doi.org/10.1016/j.physrep.2009.11.002 | DOI 10.1016/j.physrep.2009.11.002
[37] Frank, O., & Strauss, D. (1986). Markov graphs. Journal of the american Statistical association, 81(395), 832–842. https://doi.org/10.2307/2289017 | DOI 10.1080/01621459.1986.10478342
[38] Freeman, L. C. (1977). A Set of Measures of Centrality Based on Betweenness. Sociometry, 40(1), 35–41. https://doi.org/10.2307/3033543 | DOI 10.2307/3033543
[39] Freeman, L. C. (2004). The development of social network analysis. A Study in the Sociology of Science. Empirical Press.
[40] Friedkin, N. E. (1991). Theoretical Foundations for Centrality Measures. American Journal of Sociology, 96(6), 1478–1504. https://doi.org/10.1086/229694 | DOI 10.1086/229694
[41] Gephi.org. (2017). Learn how to use Gephi. https://gephi.org/users/
[42] Goodreau, S. M., Handcock, M. S., Hunter, D. R., Butts, C. T., & Morris, M. (2008). A statnet Tutorial. Journal of statistical software, 24(9), 1–26. https://doi.org/10.18637/jss.v024.i09 | DOI 10.18637/jss.v024.i09
[43] Goodreau, S. M., Kitts, J. A., & Morris, M. (2009). Birds of a feather, or friend of a friend? Using exponential random graph models to investigate adolescent social networks. Demography, 46(1), 103–125. https://doi.org/10.1353/dem.0.0045 | DOI 10.1353/dem.0.0045
[44] Grimes, D. A., & Schulz, K. F. (2008). Making sense of odds and odds ratios. Obstetrics & Gynecology, 111(2), 423–426. https://doi.org/10.1097/01.AOG.0000297304.32187.5d | DOI 10.1097/01.AOG.0000297304.32187.5d
[45] Grund, T. U., & Densley, J. A. (2015). Ethnic homophily and triad closure: Mapping internal gang structure using exponential random graph models. Journal of Contemporary Criminal Justice, 31(3), 354–370. https://doi.org/ 10.1177/1043986214553377 | DOI 10.1177/1043986214553377
[46] Han, G., McCubbins, O. P., & Paulsen, T. H. (2016). Using Social Network Analysis to Measure Student Collaboration in an Undergraduate Capstone Course. NACTA Journal, 60(2), 176–182. https://lib.dr.iastate.edu/ageds_pubs/33/
[47] Handcock, M., Hunter, D., Butts, C., Goodreau, S., Krivitsky, P., & Morris, M. (2018). ergm: Fit, Simulate and Diagnose Exponential-Family Models for Networks. The Statnet Project (http://www.statnet.org). R package version 3.9.4, https://CRAN.R-project.org/package=ergm
[48] Harris, J. K. (2013). An introduction to exponential random graph modeling (Vol. 173). Sage Publications.
[49] Heath, A. C., Kessler, R. C., Neale, M. C., Hewitt, J. K., Eaves, L. J., & Kendler, K. S. (1993). Testing hypotheses about direction of causation using cross-sectional family data. Behavior Genetics, 23(1), 29–50. https://doi.org/10.1007/bf01067552 | DOI 10.1007/BF01067552
[50] Hervé, M. (2020). Package 'RVAideMemoire'.
[51] Hoff, P. D., Raftery, A. E., & Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the american Statistical association, 97(460), 1090–1098. https://doi.org/10.1198/016214502388618906 | DOI 10.1198/016214502388618906
[52] Holland, P. W., Laskey, K. B., & Leinhardt, S. (1983). Stochastic blockmodels: First steps. Social networks, 5(2), 109–137. https://doi.org/10.1016/0378-8733(83)90021-7 | DOI 10.1016/0378-8733(83)90021-7
[53] Huisman, M. (2009). Imputation of missing network data: Some simple procedures. Journal of Social Structure, 10(1), 1–29. https://doi.org/10.1007/978-1-4614-7163-9_394-1 | DOI 10.1007/978-1-4614-7163-9_394-1
[54] Huitsing, G., & Veenstra, R. (2012). Bullying in classrooms: Participant roles from a social network perspective. Aggressive behavior, 38(6), 494–509. https://doi.org/10.1002/ab.21438 | DOI 10.1002/ab.21438
[55] Hunter, D. R., & Handcock, M. S. (2006). Inference in curved exponential family models for networks. Journal of Computational and Graphical Statistics, 15(3), 565–583. https://doi.org/10.1198/106186006X133069 | DOI 10.1198/106186006X133069
[56] Hunter, D., Handcock, M., Butts, C., Goodreau, S., & Morris, M. (2008). ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software, 24(3), 1–29. https://doi.org/10.18637/jss.v024.i03 | DOI 10.18637/jss.v024.i03
[57] Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014). ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PloS one, 9(6). https://doi.org/10.1371/journal.pone.0098679 | DOI 10.1371/journal.pone.0098679
[58] Jiao, C., Wang, T., Liu, J., Wu, H., Cui, F., & Peng, X. (2017). Using Exponential Random Graph Models to analyze the character of peer relationship networks and their effects on the subjective well-being of adolescents. Frontiers in psychology, 8, 583. https://doi.org/10.3389/fpsyg.2017.00583 | DOI 10.3389/fpsyg.2017.00583
[59] Jimoyiannis, A., Tsiotakis, P., & Roussinos, D. (2013). Social network analysis of students' participation and presence in a community of educational blogging. Interactive Technology and Smart Education, 10(1), 15–30. https://doi.org/10.1108/17415651311326428 | DOI 10.1108/17415651311326428
[60] Juhaňák, L. (2017). Sociální sítě autorů publikujících v pedagogických vědách v letech 2009–2013: Exploratorní analýza. Studia paedagogica, 22(1), 9–36. https://doi.org/10.5817/SP2017-1-2 | DOI 10.5817/SP2017-1-2
[61] Kadushin, C. (2012). Understanding social networks: Theories, concepts, and findings. OUP USA.
[62] Kalkusová, L. (2017). Adaptační kurz jako nástroj změny sociálních vztahů ve třídním kolektivu. Studia sportiva, 11(1), 128–134. https://doi.org/10.5817/StS2017-1-30 | DOI 10.5817/StS2017-1-30
[63] Kindermann, T. A. (2007). Effects of Naturally Existing Peer Groups on Changes in Academic Engagement in a Cohort of Sixth Graders. Child Development, 78(4), 1186–1203. https://doi.org/10.1111/j.1467-8624.2007.01060.x | DOI 10.1111/j.1467-8624.2007.01060.x
[64] Kim, B., Lee, K. H., Xue, L., & Niu, X. (2018). A review of dynamic network models with latent variables. Statistics surveys, 12, 105–135. https://doi.org/10.1214/18-SS121 | DOI 10.1214/18-SS121
[65] Kim, J. (2015). How to choose the level of significance: A pedagogical note.
[66] Kolleck, N. (2015). Uncovering influence through Social Network Analysis: the role of schools in Education for Sustainable Development. Journal of Education Policy, 31(3), 308–329. https://doi.org/10.1080/02680939.2015.1119315 | DOI 10.1080/02680939.2015.1119315
[67] Kossinets, G. (2006). Effects of missing data in social networks. Social Networks, 28, 247–268. https://doi.org/10.1016/j.socnet.2005.07.002 | DOI 10.1016/j.socnet.2005.07.002
[68] Krivitsky, P. N., & Goodreau, S. M. (2019). STERGM-Separable Temporal ERGMs for modeling discrete relational dynamics with statnet. https://cran.r-project.org/web/packages/tergm/vignettes/STERGM.pdf
[69] Krivitsky, P. N., & Handcock, M. S. (2014). A separable model for dynamic networks. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(1), 29–46. https://doi.org/10.1111/rssb.12014 | DOI 10.1111/rssb.12014
[70] Krivitsky, P. N. (2012). Exponential-family random graph models for valued networks. Electronic journal of statistics, 6, 1100–1128. https://doi.org/10.1214/12-EJS696 | DOI 10.1214/12-EJS696
[71] Knoke, D., & Yang, S. (2020). Social network analysis. SAGE.
[72] Landherr, A., Friedl, B., & Heidemann, J. (2010). A Critical Review of Centrality Measures in Social Networks. Business & Information Systems Engineering, 2 (6), 371–385. https://doi.org/10.1007/s12599-010-0127-3 | DOI 10.1007/s12599-010-0127-3
[73] Leung, B. P., & Silberling, J. (2006). Using sociograms to identify social status in the classroom. The California School Psychologist, 11(1), 57–61. https://doi.org/10.1007/BF03341115 | DOI 10.1007/BF03341115
[74] Levy (2016). gwdegree: Improving interpretation of geometrically-weighted degree estimates in exponential random graph models. Journal of Open Source Software, 1(3), 36, https://doi.org/10.21105/joss.00036 | DOI 10.21105/joss.00036
[75] Li, Y., & Carriere, K. C. (2013). Assessing goodness of fit of exponential random graph models. International Journal of Statistics and Probability, 2(4), 64. https://doi.org/10.5539/ijsp.v2n4p64 | DOI 10.5539/ijsp.v2n4p64
[76] Lin, N. (2017). Building a Network Theory of Social Capital. Social Capital, 3–28. https://doi.org/10.4324/9781315129457-1 | DOI 10.4324/9781315129457-1
[77] Lubbers, M. J. (2003). Group composition and network structure in school classes: a multilevel application of the p- model. Social Networks, 25(4), 309–332. https://doi.org/10.1016/S0378-8733(03)00013-3 | DOI 10.1016/S0378-8733(03)00013-3
[78] Lubbers, M. J., & Snijders, T. A. (2007). A comparison of various approaches to the exponential random graph model: A reanalysis of 102 student networks in school classes. Social networks, 29(4), 489–507. https://doi.org/10.1016/j.socnet.2007.03.002 | DOI 10.1016/j.socnet.2007.03.002
[79] Lusher, D., Koskinen, J., & Robins, G. (Eds.). (2012). Exponential Random Graph Models for Social Networks: Theory, Methods, and Applications (Structural Analysis in the Social Sciences). Cambridge University Press. https://doi.org/10.1017/CBO9780511894701 | DOI 10.1017/CBO9780511894701
[80] Martınez, A., Dimitriadis, Y., Rubia, B., Gómez, E., & De La Fuente, P. (2003). Combining qualitative evaluation and social network analysis for the study of classroom social interactions. Computers & Education, 41(4), 353–368. https://doi.org/10.1016/j.compedu.2003.06.001 | DOI 10.1016/j.compedu.2003.06.001
[81] Meijs, C., & De Laat, M. (2012). Social Network Analyses (SNA) as a method to study the structure of contacts within teams of a school for secondary education. In V. Hodgson, C. Jones, M. de Laat, D. McConnell, T. Ryberg, & P. Sloep (Eds.), Proceedings of the 8th International Learning Conference on Networked Learning.
[82] Moreno, J. L. (1934). Who shall survive?: A new approach to the problem of human interrelations. Nervous and Mental Disease Publishing Co. https://doi.org/10.1037/10648-000 | DOI 10.1037/10648-000
[83] Morris, M., Handcock, M. S., & Hunter, D. R. (2008). Specification of exponential-family random graph models: terms and computational aspects. Journal of statistical software, 24(4), 1548–7660. https://doi.org/10.18637/jss.v024.i04 | DOI 10.18637/jss.v024.i04
[84] Morris, M., Krivitsky, P. N., Handcock, M. S., Butts, C. T., Hunter, D. R., Goodreau, S. M., & Bender de-Moll, S. (2019). Temporal Exponential Random Graph Models (TERGMs) for dynamic network modeling in statnet. http://statnet.org/tergm_tutorial.html
[85] Mrvar, A., & Batagelj, V. (2019). Programs for analysis and visualization of very large networks: Reference manual. http://mrvar.fdv.uni-lj.si/pajek/pajekman.pdf
[86] Munoz, D. A., Queupil, J. P., & Fraser, P. (2016). Assessing collaboration networks in educational research. International Journal of Educational Management, 30(3), 416–36. https://doi.org/10.1108/IJEM-11-2014-0154 | DOI 10.1108/IJEM-11-2014-0154
[87] Murphy, P. (2020). Phil Murphy Tutorials. https://rpubs.com/pjmurphy
[88] Nagy, T., Nagyová, S., & Szárazová, B. (2018). Sociometria v pedagogickom výskume. Biológia, Ekológia, Chémia, 22(4), 4–11.
[89] Naim, K., Yuldashev, F., Demiroz, F., & Arslan, T. (2010). Social network analysis (SNA) applications in evaluating MPA classes. Journal of Public Affairs Education, 16(4), 541–564. https://doi.org/10.1080/15236803.2010.12001614 | DOI 10.1080/15236803.2010.12001614
[90] Parkhurst, J. T., & Hopmeyer, A. (1998). Sociometric popularity and peer-perceived popularity: Two distinct dimensions of peer status. The Journal of Early Adolescence, 18(2), 125–144. https://doi.org/10.1177/0272431698018002001 | DOI 10.1177/0272431698018002001
[91] Peery, J. C. (1979). Popular, amiable, isolated, rejected: A reconceptualization of socio-metric status in preschool children. Child Development, 50(4), 1231–1234. https://doi.org/10.2307/1129356 | DOI 10.2307/1129356
[92] Quardokus, K., & Henderson, C. (2015). Promoting instructional change: using social network analysis to understand the informal structure of academic departments. Higher Education, 70(3), 315–335. https://doi.org/10.1007/s10734-014-9831-0 | DOI 10.1007/s10734-014-9831-0
[93] Radford, M. (2008). Complexity and truth in educational research. Educational Philosophy and Theory, 40(1), 144–157. https://doi.org/10.1111/j.1469-5812.2007.00396.x | DOI 10.1111/j.1469-5812.2007.00396.x
[94] Ripley, R. M., Snijders, T. A., Boda, Z., Vörös, A., & Preciado, P. (2020). Manual for SIENA version 4.0. University of Oxford.
[95] Robins, G., Pattison, P., Kalish, Y., & Lusher, D. (2007). An introduction to exponential random graph (p*) models for social networks. Social networks, 29(2), 173–191. https://doi.org/10.1016/j.socnet.2006.08.002 | DOI 10.1016/j.socnet.2006.08.002
[96] Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31(4), 581–603. https://doi.org/10.1007/bf02289527 | DOI 10.1007/BF02289527
[97] Sarkar, P., & Moore, A. W. (2006). Dynamic social network analysis using latent space models. In Advances in Neural Information Processing Systems (s. 1145–1152). https://doi.org/10.1145/1117454.1117459 | DOI 10.1145/1117454.1117459
[98] Schofield, J. W. & Whitley, B. E. (1983). Peer Nomination vs. Rating Scale Measurement of Children's Peer Preferences. Social Psychology Quarterly, 46(3), 242–251. https://doi.org/10.2307/3033795 | DOI 10.2307/3033795
[99] Scott, J. (2012). What is social network analysis? Bloomsbury Academic.
[100] Scott, J. (2017). Social network analysis (Fourth Edition). SAGE.
[101] Sewell, D. K., & Chen, Y. (2015). Latent space models for dynamic networks. Journal of the American Statistical Association, 110(512), 1646–1657. https://doi.org/10.1080/01621459.2014.988214 | DOI 10.1080/01621459.2014.988214
[102] Shibutani, T. (2000). Social processes: an introduction to sociology. iUniverse.com.
[103] Snijders, T. A. (1996). Stochastic actor- oriented models for network change. Journal of mathe-matical sociology, 21(1–2), 149–172. https://doi.org/10.1080/0022250X.1996.9990178 | DOI 10.1080/0022250X.1996.9990178
[104] Snijders, T. A., & Baerveldt, C. (2003). A multilevel network study of the effects of delinquent behavior on friendship evolution. Journal of mathematical sociology, 27(2–3), 123–151. https://doi.org/10.1080/00222500305892 | DOI 10.1080/00222500305892
[105] Snijders, T. A., Pattison, P. E., Robins, G. L., & Handcock, M. S. (2006). New specifications for exponential random graph models. Sociological methodology, 36(1), 99–153. https://doi.org/10.1111/j.1467-9531.2006.00176.x | DOI 10.1111/j.1467-9531.2006.00176.x
[106] Snijders, T. A., Van de Bunt, G. G., & Steglich, C. E. (2010). Introduction to stochastic actor-based models for network dynamics. Social networks, 32(1), 44–60. https://doi.org/10.1016/j.socnet.2009.02.004 | DOI 10.1016/j.socnet.2009.02.004
[107] Steglich, C., Snijders, T. A. B., & Pearson, M. (2010). 8. Dynamic Networks and Behavior: Separating Selection from Influence. Sociological Methodology, 40(1), 329–393. https://doi.org/10.1111/j.1467-9531.2010.01225.x | DOI 10.1111/j.1467-9531.2010.01225.x
[108] Stepanyan, K., Borau, K., & Ullrich, C. (2010). A social network analysis perspective on student interaction within the twitter microblogging environment. In 2010 10th IEEE international conference on advanced learning technologies (s. 70–72). IEEE.
[109] Sweet, T. M., Thomas, A. C., & Junker, B. W. (2013). Hierarchical network models for education research: Hierarchical latent space models. Journal of Educational and Behavioral Statistics, 38(3), 295–318. https://doi.org/10.3102/1076998612458702 | DOI 10.3102/1076998612458702
[110] Šalamounová, Z., & Fučík, P. (2019). The relationship between peer status and students' participation in classroom discourse. Educational Studies. https://doi.org/10.1080/03055698.2019.1706042 | DOI 10.1080/03055698.2019.1706042
[111] The Statnet Development Team (2019). An Example Analysis Using LOLOG. https://cran.r-project.org/web/packages/lolog/vignettes/lolog-ergm.pdf
[112] Titmanová, M. (2019). Klima ve školní třídě aneb šikana v praxi. Školský psychológ/Školní psycholog, 20(1), 67–76.
[113] UCINET. (2020). UCINET Software. https://sites.google.com/site/ucinetsoftware/
[114] Valente, T. W., Coronges, K., Lakon, C., & Costenbader, E. (2008). How Correlated Are Network Centrality Measures? Connections, 28(1), 16–26.
[115] Van Der Pol, J. (2017). Introduction to network modeling using Exponential Random Graph models (ERGM). https://hal.archives-ouvertes.fr/hal-01284994/document
[116] Vítová, J., Balcarová, J., & Linhartová, V. (2013). The social position of pupils with special educational needs in the group intact peers. Paidagogos – Journal of Education in Contexts, 2013(2), 451–464.
[117] Wang, P., Robins, G., & Pattison, P. (2009). PNet: program for the simulation and estimation of exponential random graph models. Melbourne School of Psychological Sciences, The University of Melbourne.
[118] Wang, P., Robins, G., Pattison, P., & Lazega, E. (2013). Exponential random graph models for multilevel networks. Social Networks, 35(1), 96–115. https://doi.org/10.1016/j.socnet.2013.01.004 | DOI 10.1016/j.socnet.2013.01.004
[119] Wang, Y. J., & Wong, G. Y. (1987). Stochastic blockmodels for directed graphs. Journal of the American Statistical Association, 82(397), 8–19. https://doi.org/10.1080/01621459.1987.10478385 | DOI 10.1080/01621459.1987.10478385
[120] Wasserman, S., & Faust, K. (2019). Social network analysis: methods and applications. Cambridge University Press.
[121] Wasserman, S., & Pattison, P. (1996). Logit models and logistic regressions for social networks: I. An introduction to Markov graphs and p. Psychometrika, 61(3), 401–425. https://doi.org/10.1111/j.1469-7610.1994.tb01806.x10.1007/BF02294547 | DOI 10.1007/BF02294547
[122] White, H. C. (2008). Identity and control: How social formations emerge. Princeton University Press.
[123] Williams, B. T., & Gilmour, J. D. (1994). Annotation: Sociometry and peer elationships. Journal of Child Psychology and Psychiatry, 35(6), 997–1013. https://doi.org/10.1111/j.1469-7610.1994.tb01806.x | DOI 10.1111/j.1469-7610.1994.tb01806.x
[2] An, W. (2015). Multilevel meta network analysis with application to studying network dynamics of network interventions. Social Networks, 43, 48–56. https://doi.org/10.1016/j.socnet.2015.03.006 | DOI 10.1016/j.socnet.2015.03.006
[3] Anderson, A., Locke, J., Kretzmann, M., Kasari, C., & AIR-B Network. (2016). Social network analysis of children with autism spectrum disorder: predictors of fragmentation and connectivity in elementary school classrooms. Autism, 20(6), 700–709. https://doi.org/10.1177/1362361315603568 | DOI 10.1177/1362361315603568
[4] Anderson, C. J., Wasserman, S., & Crouch, B. (1999). A p* primer: Logit models for social networks. Social networks, 21(1), 37–66. https://doi.org/10.1016/S0378-8733(98)00012-4 | DOI 10.1016/S0378-8733(98)00012-4
[5] Bakkenes, I., De Brabander, C., & Imants, J. (1999). Teacher Isolation and Communication Network Analysis in Primary Schools. Educational Administration Quarterly, 35(2), 166–202. https://doi.org/10.1177/00131619921968518 | DOI 10.1177/00131619921968518
[6] Barclay, J. R. (1967). Effecting behavior change in the elementary classroom: An exploratory study. Journal of Counseling Psychology, 14(3), 240–247. https://doi.org/10.1037/h0024541 | DOI 10.1037/h0024541
[7] Baron, D. (1951). Personal-social characteristics and classroom social status: A sociometric study of fifth and sixth grade girls. Sociometry, 14(1), 32–42. https://doi.org/10.2307/2785208 | DOI 10.2307/2785208
[8] Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media. https://gephi.org/publications/gephi-bastian-feb09.pdf
[9] Batagelj, V., & Mrvar, A. (1998). Pajek – Program for Large Network Analysis. Connections, 21(2), 47–57. https://doi.org/10.1007/978-3-642-18638-7_4 | DOI 10.1007/978-3-642-18638-7_4
[10] Beebee, H., Hitchcock, C., & Menzies, P. (Eds.). (2009). The Oxford Handbook of Causation. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199279739.001.0001 | DOI 10.1093/oxfordhb/9780199279739.001.0001
[11] Berry, K. J., Johnston, J. E., & Mielke, J. P. W. (2019). A Primer of Permutation Statistical Methods. Springer International Publishing. https://doi.org/10.1007/978-3-030-20933-9 | DOI 10.1007/978-3-030-20933-9
[12] Bokhove, C. (2018). Exploring classroom interaction with dynamic social network analysis. International Journal of Research & Method in Education, 41(1), 17–37. https://doi.org/10.1080/1743727X.2016.1192116 | DOI 10.1080/1743727X.2016.1192116
[13] Bonacich, P. (1987). Power and Centrality: A Family of Measures. American Journal of Sociology, 92(5), 1170–1182. https://doi.org/10.1086/228631 | DOI 10.1086/228631
[14] Bonacich, P. (2007). Some unique properties of eigenvector centrality. Social Networks, 29(4), 555–564. https://doi.org/10.1016/j.socnet.2007.04.002 | DOI 10.1016/j.socnet.2007.04.002
[15] Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to meta-analysis. John Wiley & Sons. https://doi.org/10.1002/9780470743386 | DOI 10.1002/9780470743386
[16] Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55–71. https://doi.org/10.1016/j.socnet.2004.11.008 | DOI 10.1016/j.socnet.2004.11.008
[17] Borgatti, S. P., Everett, M. G., & Freeman, L. C. (2002). Ucinet for Windows: Software for Social Network Analysis. Analytic Technologies.
[18] Borgatti, S. P., Everett, M. G., & Johnson, J. C. (2018). Analyzing social networks. SAGE.
[19] Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323(5916), 892–895. https://doi.org/10.1126/science.1165821 | DOI 10.1126/science.1165821
[20] Breuer, R., Klamma, R., Cao, Y., & Vuorikari, R. (2009, September). Social network analysis of 45,000 schools: A case study of technology enhanced learning in Europe. In European Conference on Technology Enhanced Learning (s. 166–180). Springer.
[21] Burk, W. J., Steglich, C. E., & Snijders, T. A. (2007). Beyond dyadic interdependence: Actor-oriented models for co-evolving social networks and individual behaviors. International journal of behavioral development, 31(4), 397–404. https://doi.org/10.1177/0165025407077762 | DOI 10.1177/0165025407077762
[22] Butts, C. T. (2007). 8. Permutation Models for Relational Data. Sociological Methodology, 37(1), 257–281. https://doi.org/10.1111/j.1467-9531.2007.00183.x | DOI 10.1111/j.1467-9531.2007.00183.x
[23] Butts, C. T. (2008). Social network analysis with sna. Journal of statistical software, 24(6), 1–51. https://doi.org/10.18637/jss.v024.i06 | DOI 10.18637/jss.v024.i06
[24] Butts, C. T., & Butts, M. C. T. (2019). Package 'sna'.
[25] Carrington, P. J., Scott, J., & Wasserman, S. (2009). Models and methods in social network analysis. Cambridge University Press.
[26] Cerezo, F., & Ato, M. (2005). Bullying in Spanish and English pupils: A sociometric perspective using the BULL-S questionnaire. Educational psychology, 25(4), 353–367. https://doi.org/10.1080/01443410500041458 | DOI 10.1080/01443410500041458
[27] Chen, J., Lin, T. J., Justice, L., & Sawyer, B. (2019). The social networks of children with and without disabilities in early childhood special education classrooms. Journal of autism and developmental disorders, 1–16. https://doi.org/10.1007/s10803-017-3272-4 | DOI 10.1007/s10803-017-3272-4
[28] Cherven, K. (2013). Network graph analysis and visualization with Gephi: visualize and analyze your data swiftly using dynamic network graphs built with Gephi. Packt Publishing.
[29] Cherven, K. (2015). Mastering Gephi network visualization. Packt Publishing Ltd.
[30] Csárdi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, complex systems, 1695(5), 1–9.
[31] Csárdi, G., & Nepusz, T. (2010). igraph Reference manual. http://igraph. sourceforge. net/docu-mentation.html
[32] Cunningham, D., Everton, S., & Murphy, P. (2016). Understanding dark networks: A strategic framework for the use of social network analysis. Rowman & Littlefield.
[33] Daldal, A. (2014). Power and ideology in Michel Foucault and Antonio Gramsci: A compa-rative analysis. Review of History and Political Science, 2(2), 149–167.
[34] Diviák, T. (2017). Ekvivalence a blokové modelování v analýze sociálních sítí. Naše společnost (Our Society), 15(1), 27–40. https://doi.org/10.13060/1214438X.2017.1.15.366 | DOI 10.13060/1214438X.2017.1.15.366
[35] Edwards, G. (2010). Mixed-method approaches to social network analysis. National Centre for Research Methods.
[36] Fortunato, S. (2010). Community detection in graphs. Physics reports, 486(3–5), 75–174. https://doi.org/10.1016/j.physrep.2009.11.002 | DOI 10.1016/j.physrep.2009.11.002
[37] Frank, O., & Strauss, D. (1986). Markov graphs. Journal of the american Statistical association, 81(395), 832–842. https://doi.org/10.2307/2289017 | DOI 10.1080/01621459.1986.10478342
[38] Freeman, L. C. (1977). A Set of Measures of Centrality Based on Betweenness. Sociometry, 40(1), 35–41. https://doi.org/10.2307/3033543 | DOI 10.2307/3033543
[39] Freeman, L. C. (2004). The development of social network analysis. A Study in the Sociology of Science. Empirical Press.
[40] Friedkin, N. E. (1991). Theoretical Foundations for Centrality Measures. American Journal of Sociology, 96(6), 1478–1504. https://doi.org/10.1086/229694 | DOI 10.1086/229694
[41] Gephi.org. (2017). Learn how to use Gephi. https://gephi.org/users/
[42] Goodreau, S. M., Handcock, M. S., Hunter, D. R., Butts, C. T., & Morris, M. (2008). A statnet Tutorial. Journal of statistical software, 24(9), 1–26. https://doi.org/10.18637/jss.v024.i09 | DOI 10.18637/jss.v024.i09
[43] Goodreau, S. M., Kitts, J. A., & Morris, M. (2009). Birds of a feather, or friend of a friend? Using exponential random graph models to investigate adolescent social networks. Demography, 46(1), 103–125. https://doi.org/10.1353/dem.0.0045 | DOI 10.1353/dem.0.0045
[44] Grimes, D. A., & Schulz, K. F. (2008). Making sense of odds and odds ratios. Obstetrics & Gynecology, 111(2), 423–426. https://doi.org/10.1097/01.AOG.0000297304.32187.5d | DOI 10.1097/01.AOG.0000297304.32187.5d
[45] Grund, T. U., & Densley, J. A. (2015). Ethnic homophily and triad closure: Mapping internal gang structure using exponential random graph models. Journal of Contemporary Criminal Justice, 31(3), 354–370. https://doi.org/ 10.1177/1043986214553377 | DOI 10.1177/1043986214553377
[46] Han, G., McCubbins, O. P., & Paulsen, T. H. (2016). Using Social Network Analysis to Measure Student Collaboration in an Undergraduate Capstone Course. NACTA Journal, 60(2), 176–182. https://lib.dr.iastate.edu/ageds_pubs/33/
[47] Handcock, M., Hunter, D., Butts, C., Goodreau, S., Krivitsky, P., & Morris, M. (2018). ergm: Fit, Simulate and Diagnose Exponential-Family Models for Networks. The Statnet Project (http://www.statnet.org). R package version 3.9.4, https://CRAN.R-project.org/package=ergm
[48] Harris, J. K. (2013). An introduction to exponential random graph modeling (Vol. 173). Sage Publications.
[49] Heath, A. C., Kessler, R. C., Neale, M. C., Hewitt, J. K., Eaves, L. J., & Kendler, K. S. (1993). Testing hypotheses about direction of causation using cross-sectional family data. Behavior Genetics, 23(1), 29–50. https://doi.org/10.1007/bf01067552 | DOI 10.1007/BF01067552
[50] Hervé, M. (2020). Package 'RVAideMemoire'.
[51] Hoff, P. D., Raftery, A. E., & Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the american Statistical association, 97(460), 1090–1098. https://doi.org/10.1198/016214502388618906 | DOI 10.1198/016214502388618906
[52] Holland, P. W., Laskey, K. B., & Leinhardt, S. (1983). Stochastic blockmodels: First steps. Social networks, 5(2), 109–137. https://doi.org/10.1016/0378-8733(83)90021-7 | DOI 10.1016/0378-8733(83)90021-7
[53] Huisman, M. (2009). Imputation of missing network data: Some simple procedures. Journal of Social Structure, 10(1), 1–29. https://doi.org/10.1007/978-1-4614-7163-9_394-1 | DOI 10.1007/978-1-4614-7163-9_394-1
[54] Huitsing, G., & Veenstra, R. (2012). Bullying in classrooms: Participant roles from a social network perspective. Aggressive behavior, 38(6), 494–509. https://doi.org/10.1002/ab.21438 | DOI 10.1002/ab.21438
[55] Hunter, D. R., & Handcock, M. S. (2006). Inference in curved exponential family models for networks. Journal of Computational and Graphical Statistics, 15(3), 565–583. https://doi.org/10.1198/106186006X133069 | DOI 10.1198/106186006X133069
[56] Hunter, D., Handcock, M., Butts, C., Goodreau, S., & Morris, M. (2008). ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software, 24(3), 1–29. https://doi.org/10.18637/jss.v024.i03 | DOI 10.18637/jss.v024.i03
[57] Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014). ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PloS one, 9(6). https://doi.org/10.1371/journal.pone.0098679 | DOI 10.1371/journal.pone.0098679
[58] Jiao, C., Wang, T., Liu, J., Wu, H., Cui, F., & Peng, X. (2017). Using Exponential Random Graph Models to analyze the character of peer relationship networks and their effects on the subjective well-being of adolescents. Frontiers in psychology, 8, 583. https://doi.org/10.3389/fpsyg.2017.00583 | DOI 10.3389/fpsyg.2017.00583
[59] Jimoyiannis, A., Tsiotakis, P., & Roussinos, D. (2013). Social network analysis of students' participation and presence in a community of educational blogging. Interactive Technology and Smart Education, 10(1), 15–30. https://doi.org/10.1108/17415651311326428 | DOI 10.1108/17415651311326428
[60] Juhaňák, L. (2017). Sociální sítě autorů publikujících v pedagogických vědách v letech 2009–2013: Exploratorní analýza. Studia paedagogica, 22(1), 9–36. https://doi.org/10.5817/SP2017-1-2 | DOI 10.5817/SP2017-1-2
[61] Kadushin, C. (2012). Understanding social networks: Theories, concepts, and findings. OUP USA.
[62] Kalkusová, L. (2017). Adaptační kurz jako nástroj změny sociálních vztahů ve třídním kolektivu. Studia sportiva, 11(1), 128–134. https://doi.org/10.5817/StS2017-1-30 | DOI 10.5817/StS2017-1-30
[63] Kindermann, T. A. (2007). Effects of Naturally Existing Peer Groups on Changes in Academic Engagement in a Cohort of Sixth Graders. Child Development, 78(4), 1186–1203. https://doi.org/10.1111/j.1467-8624.2007.01060.x | DOI 10.1111/j.1467-8624.2007.01060.x
[64] Kim, B., Lee, K. H., Xue, L., & Niu, X. (2018). A review of dynamic network models with latent variables. Statistics surveys, 12, 105–135. https://doi.org/10.1214/18-SS121 | DOI 10.1214/18-SS121
[65] Kim, J. (2015). How to choose the level of significance: A pedagogical note.
[66] Kolleck, N. (2015). Uncovering influence through Social Network Analysis: the role of schools in Education for Sustainable Development. Journal of Education Policy, 31(3), 308–329. https://doi.org/10.1080/02680939.2015.1119315 | DOI 10.1080/02680939.2015.1119315
[67] Kossinets, G. (2006). Effects of missing data in social networks. Social Networks, 28, 247–268. https://doi.org/10.1016/j.socnet.2005.07.002 | DOI 10.1016/j.socnet.2005.07.002
[68] Krivitsky, P. N., & Goodreau, S. M. (2019). STERGM-Separable Temporal ERGMs for modeling discrete relational dynamics with statnet. https://cran.r-project.org/web/packages/tergm/vignettes/STERGM.pdf
[69] Krivitsky, P. N., & Handcock, M. S. (2014). A separable model for dynamic networks. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(1), 29–46. https://doi.org/10.1111/rssb.12014 | DOI 10.1111/rssb.12014
[70] Krivitsky, P. N. (2012). Exponential-family random graph models for valued networks. Electronic journal of statistics, 6, 1100–1128. https://doi.org/10.1214/12-EJS696 | DOI 10.1214/12-EJS696
[71] Knoke, D., & Yang, S. (2020). Social network analysis. SAGE.
[72] Landherr, A., Friedl, B., & Heidemann, J. (2010). A Critical Review of Centrality Measures in Social Networks. Business & Information Systems Engineering, 2 (6), 371–385. https://doi.org/10.1007/s12599-010-0127-3 | DOI 10.1007/s12599-010-0127-3
[73] Leung, B. P., & Silberling, J. (2006). Using sociograms to identify social status in the classroom. The California School Psychologist, 11(1), 57–61. https://doi.org/10.1007/BF03341115 | DOI 10.1007/BF03341115
[74] Levy (2016). gwdegree: Improving interpretation of geometrically-weighted degree estimates in exponential random graph models. Journal of Open Source Software, 1(3), 36, https://doi.org/10.21105/joss.00036 | DOI 10.21105/joss.00036
[75] Li, Y., & Carriere, K. C. (2013). Assessing goodness of fit of exponential random graph models. International Journal of Statistics and Probability, 2(4), 64. https://doi.org/10.5539/ijsp.v2n4p64 | DOI 10.5539/ijsp.v2n4p64
[76] Lin, N. (2017). Building a Network Theory of Social Capital. Social Capital, 3–28. https://doi.org/10.4324/9781315129457-1 | DOI 10.4324/9781315129457-1
[77] Lubbers, M. J. (2003). Group composition and network structure in school classes: a multilevel application of the p- model. Social Networks, 25(4), 309–332. https://doi.org/10.1016/S0378-8733(03)00013-3 | DOI 10.1016/S0378-8733(03)00013-3
[78] Lubbers, M. J., & Snijders, T. A. (2007). A comparison of various approaches to the exponential random graph model: A reanalysis of 102 student networks in school classes. Social networks, 29(4), 489–507. https://doi.org/10.1016/j.socnet.2007.03.002 | DOI 10.1016/j.socnet.2007.03.002
[79] Lusher, D., Koskinen, J., & Robins, G. (Eds.). (2012). Exponential Random Graph Models for Social Networks: Theory, Methods, and Applications (Structural Analysis in the Social Sciences). Cambridge University Press. https://doi.org/10.1017/CBO9780511894701 | DOI 10.1017/CBO9780511894701
[80] Martınez, A., Dimitriadis, Y., Rubia, B., Gómez, E., & De La Fuente, P. (2003). Combining qualitative evaluation and social network analysis for the study of classroom social interactions. Computers & Education, 41(4), 353–368. https://doi.org/10.1016/j.compedu.2003.06.001 | DOI 10.1016/j.compedu.2003.06.001
[81] Meijs, C., & De Laat, M. (2012). Social Network Analyses (SNA) as a method to study the structure of contacts within teams of a school for secondary education. In V. Hodgson, C. Jones, M. de Laat, D. McConnell, T. Ryberg, & P. Sloep (Eds.), Proceedings of the 8th International Learning Conference on Networked Learning.
[82] Moreno, J. L. (1934). Who shall survive?: A new approach to the problem of human interrelations. Nervous and Mental Disease Publishing Co. https://doi.org/10.1037/10648-000 | DOI 10.1037/10648-000
[83] Morris, M., Handcock, M. S., & Hunter, D. R. (2008). Specification of exponential-family random graph models: terms and computational aspects. Journal of statistical software, 24(4), 1548–7660. https://doi.org/10.18637/jss.v024.i04 | DOI 10.18637/jss.v024.i04
[84] Morris, M., Krivitsky, P. N., Handcock, M. S., Butts, C. T., Hunter, D. R., Goodreau, S. M., & Bender de-Moll, S. (2019). Temporal Exponential Random Graph Models (TERGMs) for dynamic network modeling in statnet. http://statnet.org/tergm_tutorial.html
[85] Mrvar, A., & Batagelj, V. (2019). Programs for analysis and visualization of very large networks: Reference manual. http://mrvar.fdv.uni-lj.si/pajek/pajekman.pdf
[86] Munoz, D. A., Queupil, J. P., & Fraser, P. (2016). Assessing collaboration networks in educational research. International Journal of Educational Management, 30(3), 416–36. https://doi.org/10.1108/IJEM-11-2014-0154 | DOI 10.1108/IJEM-11-2014-0154
[87] Murphy, P. (2020). Phil Murphy Tutorials. https://rpubs.com/pjmurphy
[88] Nagy, T., Nagyová, S., & Szárazová, B. (2018). Sociometria v pedagogickom výskume. Biológia, Ekológia, Chémia, 22(4), 4–11.
[89] Naim, K., Yuldashev, F., Demiroz, F., & Arslan, T. (2010). Social network analysis (SNA) applications in evaluating MPA classes. Journal of Public Affairs Education, 16(4), 541–564. https://doi.org/10.1080/15236803.2010.12001614 | DOI 10.1080/15236803.2010.12001614
[90] Parkhurst, J. T., & Hopmeyer, A. (1998). Sociometric popularity and peer-perceived popularity: Two distinct dimensions of peer status. The Journal of Early Adolescence, 18(2), 125–144. https://doi.org/10.1177/0272431698018002001 | DOI 10.1177/0272431698018002001
[91] Peery, J. C. (1979). Popular, amiable, isolated, rejected: A reconceptualization of socio-metric status in preschool children. Child Development, 50(4), 1231–1234. https://doi.org/10.2307/1129356 | DOI 10.2307/1129356
[92] Quardokus, K., & Henderson, C. (2015). Promoting instructional change: using social network analysis to understand the informal structure of academic departments. Higher Education, 70(3), 315–335. https://doi.org/10.1007/s10734-014-9831-0 | DOI 10.1007/s10734-014-9831-0
[93] Radford, M. (2008). Complexity and truth in educational research. Educational Philosophy and Theory, 40(1), 144–157. https://doi.org/10.1111/j.1469-5812.2007.00396.x | DOI 10.1111/j.1469-5812.2007.00396.x
[94] Ripley, R. M., Snijders, T. A., Boda, Z., Vörös, A., & Preciado, P. (2020). Manual for SIENA version 4.0. University of Oxford.
[95] Robins, G., Pattison, P., Kalish, Y., & Lusher, D. (2007). An introduction to exponential random graph (p*) models for social networks. Social networks, 29(2), 173–191. https://doi.org/10.1016/j.socnet.2006.08.002 | DOI 10.1016/j.socnet.2006.08.002
[96] Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31(4), 581–603. https://doi.org/10.1007/bf02289527 | DOI 10.1007/BF02289527
[97] Sarkar, P., & Moore, A. W. (2006). Dynamic social network analysis using latent space models. In Advances in Neural Information Processing Systems (s. 1145–1152). https://doi.org/10.1145/1117454.1117459 | DOI 10.1145/1117454.1117459
[98] Schofield, J. W. & Whitley, B. E. (1983). Peer Nomination vs. Rating Scale Measurement of Children's Peer Preferences. Social Psychology Quarterly, 46(3), 242–251. https://doi.org/10.2307/3033795 | DOI 10.2307/3033795
[99] Scott, J. (2012). What is social network analysis? Bloomsbury Academic.
[100] Scott, J. (2017). Social network analysis (Fourth Edition). SAGE.
[101] Sewell, D. K., & Chen, Y. (2015). Latent space models for dynamic networks. Journal of the American Statistical Association, 110(512), 1646–1657. https://doi.org/10.1080/01621459.2014.988214 | DOI 10.1080/01621459.2014.988214
[102] Shibutani, T. (2000). Social processes: an introduction to sociology. iUniverse.com.
[103] Snijders, T. A. (1996). Stochastic actor- oriented models for network change. Journal of mathe-matical sociology, 21(1–2), 149–172. https://doi.org/10.1080/0022250X.1996.9990178 | DOI 10.1080/0022250X.1996.9990178
[104] Snijders, T. A., & Baerveldt, C. (2003). A multilevel network study of the effects of delinquent behavior on friendship evolution. Journal of mathematical sociology, 27(2–3), 123–151. https://doi.org/10.1080/00222500305892 | DOI 10.1080/00222500305892
[105] Snijders, T. A., Pattison, P. E., Robins, G. L., & Handcock, M. S. (2006). New specifications for exponential random graph models. Sociological methodology, 36(1), 99–153. https://doi.org/10.1111/j.1467-9531.2006.00176.x | DOI 10.1111/j.1467-9531.2006.00176.x
[106] Snijders, T. A., Van de Bunt, G. G., & Steglich, C. E. (2010). Introduction to stochastic actor-based models for network dynamics. Social networks, 32(1), 44–60. https://doi.org/10.1016/j.socnet.2009.02.004 | DOI 10.1016/j.socnet.2009.02.004
[107] Steglich, C., Snijders, T. A. B., & Pearson, M. (2010). 8. Dynamic Networks and Behavior: Separating Selection from Influence. Sociological Methodology, 40(1), 329–393. https://doi.org/10.1111/j.1467-9531.2010.01225.x | DOI 10.1111/j.1467-9531.2010.01225.x
[108] Stepanyan, K., Borau, K., & Ullrich, C. (2010). A social network analysis perspective on student interaction within the twitter microblogging environment. In 2010 10th IEEE international conference on advanced learning technologies (s. 70–72). IEEE.
[109] Sweet, T. M., Thomas, A. C., & Junker, B. W. (2013). Hierarchical network models for education research: Hierarchical latent space models. Journal of Educational and Behavioral Statistics, 38(3), 295–318. https://doi.org/10.3102/1076998612458702 | DOI 10.3102/1076998612458702
[110] Šalamounová, Z., & Fučík, P. (2019). The relationship between peer status and students' participation in classroom discourse. Educational Studies. https://doi.org/10.1080/03055698.2019.1706042 | DOI 10.1080/03055698.2019.1706042
[111] The Statnet Development Team (2019). An Example Analysis Using LOLOG. https://cran.r-project.org/web/packages/lolog/vignettes/lolog-ergm.pdf
[112] Titmanová, M. (2019). Klima ve školní třídě aneb šikana v praxi. Školský psychológ/Školní psycholog, 20(1), 67–76.
[113] UCINET. (2020). UCINET Software. https://sites.google.com/site/ucinetsoftware/
[114] Valente, T. W., Coronges, K., Lakon, C., & Costenbader, E. (2008). How Correlated Are Network Centrality Measures? Connections, 28(1), 16–26.
[115] Van Der Pol, J. (2017). Introduction to network modeling using Exponential Random Graph models (ERGM). https://hal.archives-ouvertes.fr/hal-01284994/document
[116] Vítová, J., Balcarová, J., & Linhartová, V. (2013). The social position of pupils with special educational needs in the group intact peers. Paidagogos – Journal of Education in Contexts, 2013(2), 451–464.
[117] Wang, P., Robins, G., & Pattison, P. (2009). PNet: program for the simulation and estimation of exponential random graph models. Melbourne School of Psychological Sciences, The University of Melbourne.
[118] Wang, P., Robins, G., Pattison, P., & Lazega, E. (2013). Exponential random graph models for multilevel networks. Social Networks, 35(1), 96–115. https://doi.org/10.1016/j.socnet.2013.01.004 | DOI 10.1016/j.socnet.2013.01.004
[119] Wang, Y. J., & Wong, G. Y. (1987). Stochastic blockmodels for directed graphs. Journal of the American Statistical Association, 82(397), 8–19. https://doi.org/10.1080/01621459.1987.10478385 | DOI 10.1080/01621459.1987.10478385
[120] Wasserman, S., & Faust, K. (2019). Social network analysis: methods and applications. Cambridge University Press.
[121] Wasserman, S., & Pattison, P. (1996). Logit models and logistic regressions for social networks: I. An introduction to Markov graphs and p. Psychometrika, 61(3), 401–425. https://doi.org/10.1111/j.1469-7610.1994.tb01806.x10.1007/BF02294547 | DOI 10.1007/BF02294547
[122] White, H. C. (2008). Identity and control: How social formations emerge. Princeton University Press.
[123] Williams, B. T., & Gilmour, J. D. (1994). Annotation: Sociometry and peer elationships. Journal of Child Psychology and Psychiatry, 35(6), 997–1013. https://doi.org/10.1111/j.1469-7610.1994.tb01806.x | DOI 10.1111/j.1469-7610.1994.tb01806.x